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B-SPLINES AND OPTIMAL STABILITY 

J.M. PENA 

ABSTRACT. It is proved that, among all nonnegative bases of its space, the 
B1spline basis is optimally stable for evaluating spline functions. 

1. INTRODUCTION 

In some recent papers [3]-[5], several optimal properties of the B-spline basis 
have been studied. Different viewpoints have been considered; for instance, the 
shape preserving properties in Computer Aided Geometric Design (see [4]) or the 
supports of the basis functions (see [3]). The B-spline basis b = (bo,... , bn) is a 
normalized nonnegative basis, that is bi > 0 Vi = 0, . . . , n, and En-0 bi = 1. The 
interest of normalized nonnegative bases of a space comes from their convex hull 
property. In Computer Aided Geometric Design, this property implies that, for 
any control polygon, the corresponding curve always lies in the convex hull of the 
control polygon. In this paper, we shall prove a property of the optimal stability 
of the B-spline basis among all nonnegative bases of its space. 

Given a basis u = (u0, ... ., un) of a real vector space U of functions defined on Q 
and a function f e U, there exists a unique sequence of real coefficients (c, ... , Cn) 
such that 

n 

f(t) = Zciuz(t) 
i=O 

for all t E Q. One practical aspect to consider in the evaluation of the function f is 
the stability with respect to perturbations of the coefficients, which depends on the 
chosen basis of the space. We want to know how sensitive a value f(t) is to random 
perturbations of a given maximum relative magnitude E in the coefficients c0, .. ., Cn 

corresponding to the basis. Following [7] and [6], we can bound the corresponding 
perturbation 8f(t) of the change of f(t) by means of a condition number 

n 

CU(f(t)) := I ciui M 1, 
i=O 

for the evaluation of f(t) in the basis u: 

1fME Ir~ < C, .f ( f0) 
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Let us observe that C (f(t)) depends on the basis u, on the function f and on the 
point t. We shall consider that a basis b is optimally stable among the nonnegative 
bases of its space U if there does not exist any other basis u of nonnegative functions 
such that Cu(f(t)) < Cb(f(t)) for each function f E U evaluated at every t. In 
general, existence or uniqueness of optimally stable bases cannot be guaranteed. In 
[6] it was proved that the Bernstein basis is optimally stable among all nonnegative 
bases of the space of polynomials of degree less than or equal to n. In Section 2 (in 
Theorem 2.3) we prove a similar result (with respect to the corresponding space) 
for the B-spline basis. The customary condition number for the B-spline basis has 
been extensively considered in the literature (see, for instance, [1] or [8]). 

Section 3 includes some remarks relating optimal stability of bases in general 
spaces with the minimal elements of a partial ordering among nonnegative bases 
of the space. This partial ordering was considered in [5] and [6]. In fact, in [5] 
it was related to the customary condition number of a basis. However, minimal 
elements for this partial order have not, in general, a minimal condition number 
among nonnegative bases, as we shall recall in Section 3. 

2. OPTIMAL STABILITY OF THE B-SPLINE BASIS 

Let us introduce first the B-spline basis. Let 11k-l be the space of polynomials 
of degree less than or equal to k - 1. Let A\ = {01,... ,01 } be a partition of the 
interval I= [atf], where 

ae = 00 < 01 < ... < 01 < 01+1 =: 

and let i = [0j,i?+l], i = 0,... ,1. For any multiplicity vector m = (mi1,... , mi) 
of positive integers such that mi < k - 1, i = 1, . . . , 1, let us define 

SkAm = {s: I - *R SlIE EHk-1, i = 0,... 1; 

s(i)-) =SW +)=l,... , = 1l,... sk(-,mi -1- 

the space of polynomial splines of order k with knots 01,... ,01 of multiplicities 
ml,... , ml. 

Now let us define the extended sequence of knots, that is, each knot 0i is repeated 
mi times, 

= T =-=Tk-1 < Tk <- <_ Tn < Tn?+ 1 = ... =Tn+k =13, 

where n = k + ml + + ml - 1. It is well-known that the functions 

NAk(t) := (Ti+k - Ti)[Ti * * * Xi+k](. - t)k I i = 0 ... n, 

form a basis of SkLm called the B-spline basis. Besides, the supports of the B- 
splines are suppNi,k = [Ti,Ti+k], and we also have that Ni,k(t) > 0 for all t E 
(Ti, Ti+k) and E N, k = 1. 

We shall assume that we have a given space SkLm and we shall simplify our 
notation by denoting with b = (bo,... ., bn) the corresponding B-spline basis 

bi :=Nik- 

In the next auxiliary result we shall use the previous notations. 
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Lemma 2.1. The B-spline basis b = (b0,... , b,) satisfies 

(2.1) lim bi(t) =0 if i>j, 

and 

(2.2) lrn bi (t) = 0, if i <y. 

Proof. Let us recall (see for instance Theorem 4.17 of [9]) that the B-spline function 
bi satisfies 

(2.3) b (jt)= 0, j =0,1, I . ., kvi -2 and b (k-,,-1)(,T+) +4 o 

and 

(2.4) b (Tj k) = 0, j = 0,1,... , k/- - 2 and b (k-,i-r- ) #0, 

where vi and /uj are given by 

vi = max {i jri = .i+ = Ti+j-1}, 

pi = max {j3Ti+k = Ti+k-1 = = Ti+k-j+1} 

If i > j + uj, then ri > rj and so bi(t) = 0, bj(t) > 0 for all t E (rjrj+,j 
which implies (2.1). On the other hand, if i < j + vj, we know from (2.3) that the 
restriction of bi to the interval (rj, Trj+,j) is a polynomial which has a zero of higher 
order at rj than the restriction of bi to the same interval, which implies that (2.1) 
holds. Analogously we may show (2.2) using (2.4) instead of (2.3). Cl 

In order to prove the main theorem we also need the following matrix result. 

Lemma 2.2. Let M be an n x n nonsingular and nonnegative matrix such that 
the first nonzero entry of each column of M-1 is positive. Then M-' is, up to 
permutation of columns, a lower triangular matrix. 

Proof. We shall prove, by induction on n, that M-1 = LP, where L is a nonsingular 
lower triangular matrix and P is a permutation matrix. The result is trivial for 
n = 1. Let us assume that the result holds for n - 1 and we shall prove it for n. 
By hypothesis, M-1 has a nonnegative first row. Let us assume that this row has 
at least two nonzero entries: the (1, i) and (1,j) entries, with i $ j. Then, from 
M1M = I and the nonnegativity of M, we find that the (i, k) and (j, k) entries of 
M are zero for all k > 1, in contradiction with the nonsingularity of M. Thus M-1 
has a unique nonzero element in the first row and so there exists a permutation 
matrix Q such that the first row of M-1Q has its nonzero element in the first 
place. Clearly, the submatrix formed by the last n - 1 rows and columns of M-1Q 
is invertible, and let us denote it by B-1. Since B is an (n-1) x (n-1) nonnegative 
and nonsingular matrix such that the first nonzero entry of each column of B-1 
is positive, we deduce by the induction hypothesis that B-1 = L1P1, where L1 
is a nonsingular lower triangular matrix and P1 is a permutation matrix. Thus 
M-' = LP, with L a nonsingular lower triangular matrix and P a permutation 
matrix. 0 

Now, using the previous lemmas, we can prove the main theorem of the paper. 
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Theorem 2.3. The B-spline basis b is optimally stable with respect to the set of 
nonnegative bases of Sk,A,m, that is, there does not exist (up to permutation or 
positive scaling) a basis of nonnegative functions u = (Uo,. , un) of SkAm such 
that 

(2.5) C (f (t)) < Cb(f (t)) 

for each spline function f E Sk,A,m evaluated at every value t E [a, 13]. 
Proof. Let us assume that there exists a nonnegative basis u satisfying (2.5) for each 
spline function f E SkAm evaluated at every value t E [c>,: Let A = (a.;)o<',jun 
be the matrix of change of basis 

(2.6) b = uA. 

It is sufficient to prove that A is a generalized permutation matrix, i.e. a matrix 
with the same zero pattern as a permutation matrix. 

Let us see first that A is a nonnegative matrix. Let us assume that apq < 0 for 
some p, q. Since up is a nonnegative basis function, there exists t E [a, 13] such that 
up(t) > 0. Then, since by (2.6) 

bq = aoquo + + apqup + + anqUn 

and bq(t) > 0, we deduce that there exists m such that amq > 0 and um(t) > 0. 
Thus, taking into account that apq and amq are of opposite sign and the functions 
in u are nonnegative, we may deduce that 

n n 

Cu(bq(t)) = E JiaqjUq(t) > I E aquq(t)l = Jbq(t) = Cb(bq(t)). 
i=o i=o 

This contradiction proves that A must be nonnegative. 
Let us see now that the first and last nonzero entry of each column of A-' 

is positive. By (2.6), u = bA-1. Given any j E {o,... ,n}, we have to prove 
that, if uj = a-= b - then the first and last nonzero coefficients in the sequence 
(aO,... a an ) must be positive. Let ak be the first nonzero coefficient in the sequence 
(ao,.. ,an). From (2.1) we may deduce that 

lim u3- (t) = Lak 
t-al bk(t) 

Since u3 and bk are nonnegative functions, we conclude that ak must be nonnegative 
and therefore positive. Applying an analogous reasoning using (2.2) instead of (2.1), 
we may deduce that the last nonzero coefficient in the sequence (ao,... , an) must 
also be positive. 

We have already seen that A is nonnegative and the first and last nonzero entry 
of each column of A- l are positive. By Lemma 2.2 there exist a permutation matrix 
P and a lower triangular matrix L such that A-' = LP. Let C be the nonsingular 
upper triangular matrix obtained by reversing the order of the rows and the columns 
of L = A-lPT. Since the last nonzero entry of each column of A-' is positive, 
the same property holds for A-1PT, and therefore the first nonzero entry of each 
column of C is positive. It can be easily checked that C- l is nonnegative. Applying 
now Lemma 2.2 to C-1, we deduce that there exists a permutation of the columns 
of the nonsingular upper triangular matrix C such that the resulting matrix is also 
lower triangular (and nonsingular). This implies that C is a diagonal matrix. In 
consequence, L = A- PT is also a diagonal matrix. Therefore A can be written as 
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the product of a permutation matrix pT and a diagonal matrix L-1, and so A is a 
generalized permutation matrix. D 

3. SOME GENERAL REMARKS 

The problem of finding optimally stable nonnegative bases is closely related to 
finding minimal elements for a partial order -< among nonnegative bases of the 
space. Let u = (u,.... , Un), v = (Vo, . . . , Vn) be two bases of a vector space U of 
functions defined on Q C Rs. Then we say that u -< v if there exists a nonnegative 
matrix A such that v = uA. It is easy to see that the fact that u -< v and v < u 
are satisfied simultaneously is equivalent to saying that u and v are identical up 
to permutation and scaling. Taking into account that the product of nonnegative 
matrices is a nonnegative matrix, it follows that -< induces a partial ordering among 
the bases up to permutation and scaling. This partial ordering has been recently 
used in [5] and [6]. 

If u, v are two nonnegative bases of a space U such that u -< v, we deduce from 
the definition of -< and the nonnegativity of u, v and A that Cu(f(t)) < Cv(f(t)) 
for each function f E U evaluated at every t E Q. One can also observe, using the 
argument of the second paragraph of the proof of Theorem 2.3 (which is a slight 
refinement of the proof of the converse of Theorem 1 of [6]), that u - v if and only 
if Cu(f(t)) < Cv(f(t)) for each function f E U evaluated at every t E Q. Thus, the 
problem of finding optimally stable nonnegative bases reduces to finding minimal 
elements with respect to < among the nonnegative bases of the space. 

In the framework of spaces of functions with totally positive bases, several char- 
acterizations of minimal elements with respect to < were given in Theorem 3.8 of 
[5]. Let us recall that a matrix is totally positive if all its minors are nonnegative 
and that a system of functions u = (uo,... , un) defined on I C R is called totally 
positive if all its collocation matrices 

M (uo .. . 

= (u(tU))=0o.. m;j=O. n 

where to < ... < tm in I, are totally positive. Totally positive bases are espe- 
cially useful in Computer Aided Geometric Design due to their shape preserving 
properties (see, for instance, [2]). 

For a normalized basis u = (u... , un) (i.e., with n=o ui = 1) of a vector 
space U of functions defined on Q C RS, we considered in [5] the number 

*i(u) ( min sup CZcjuj(x)~ 
( 11(co,...Cn )ll=1 XC:Q = J 

as the condition number, as usual. The condition number *i(u) depends only on 
the basis u, in contrast to Cu(f(t)), which depends on the basis u, on the function 
f and on the point t. It is well-known (see for instance Section 4 of [5]) that *i(u) 
satisfies 

n 

,(u) li max |cij<supIEciui(x)j< max Icil 
1=0... n 

XCQ i=O 
= ,., 

for any function E'=O c-u, in U. Therefore, the condition number i' can be con- 
sidered as a measure of the efficiency of the basis for the process of controlling a 
function through its coefficients. Although for this condition number it is also true 
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that if u -< v, then ri(u) < r,(v) (see Proposition 4.2 of [5]), in this case minimal 
(nonnegative) bases with respect to -< are not necessarily minimally conditioned 
among the nonnegative bases of U. For instance, we saw in Example 4.4 of [5] 
that, although the Bernstein basis b = (bo, bl, b2) is minimal for -< (see also Corol- 
lary 1 of [6]), there exists a basis of the space of polynomials on [0,1] of degree 
less than or equal to 2 formed by nonnegative functions u = (uo, u1, u2), with 
uo(t) = (3t/2 - 1)2, u,(t) = 3t(1 - t) and u2(t) = 3t2/4, whose condition number 
,(u) is strictly smaller than i(b). 
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